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ABSTRACT 

Developing design methodologies based on experimentally validated 
predictive numerical simulation methods will enhance existing capabilities in 
predicting failure modes and structural design optimization for the high velocity 
impact problems. This paper is thus concerned with the setup of a methodology for 
modeling and simulation of the containment problem for the case of a real hybrid 
metallic/soft layered composite fancase structure. To realize this new design, a 
debris protection fan case composed of a basic metallic shell structure with a dry 
Kevlar wrap around it is considered. The fan blade is made of titanium alloy 
modeled  by a Johnson-Cook elastoplastic material in ABAQUS, while the metallic 
structure of the fan case is made of aluminum alloy also modeled as an elastoplastic 
material. A multilayered Kevlar woven dry fabric structure is wrapped around the 
thin aluminum shell to form a soft hybrid fan case. A woven fabric material model 
developed in ABAQUS has been used. This material model can capture the ballistic 
response of multi-layer fabric panels and is implemented as a VUMAT subroutine 
in an equivalent smeared shell element corresponding to the representative volume 
element (RVE) for computational efficiency. The aim is to assess how this material 
model can be applied in a real industrial application. 
 

INTRODUCTION 

Since the 70’s, the numerical simulations of perforation and penetration of 
targets by projectiles are subjects of interest. One such interesting application is the 
design and analysis of efficient lightweight engine fan blade out containment 
system [2,10,14]. In fact, in case of such engine malfunction, engine debris poses a 
serious threat to aircrafts and their occupants. Conventional methods for protecting 
aircrafts and their passengers rely on the use of heavy structures to restrict debris 
from escaping the containment case. However for better energy and economy 
efficiency, the need to strengthen and lighten aircrafts without sacrificing on 



improved safety requirements has pushed the aerospace industry to explore 
alternatives to existing metallic containment systems [7,10]. Hybrid fan case 
containment structure is a novel design in the aerospace industry which combines 
the resistance of the metallic structures with the light weightiness and energy 
absorption capability of the composite structures. Developing design methodologies 
based on experimentally validated predictive numerical simulation methods will 
thus enhance existing capabilities in predicting failure modes and structural design 
optimization for the high velocity impact problems [1,3]. 

This paper thus proposes a modeling methodology for the simulation of the 
containment problem for the case of realistic hybrid metallic/soft layered composite 
structure. The debris protection casing is composed of a basic metallic shell layer, 
made of aluminum, around which woven Kevlar dry fabric layers are wrapped. The 
fan blade is made of titanium. Both metallic parts use standard plasticity coupled 
with damage models available in ABAQUS. The dry Kevlar fabric wrap is modeled 
by a computationally efficient shell-based mesoscale mechanics unit-cell model, 
suitable for ballistic impact response of multi-layer fabric laminates and 
implemented in ABAQUS software via its VUMAT facility [9]. 
In order to simulate the impact between the blade debris and the hybrid fan case, a 
multistep analysis process is used. In the first step, one performs a preloading stage 
using an implicit analysis to generate stress and strain in the blades as well as the 
global velocity vector of the blade induced by the build-up of the cruise rotational 
velocity. In the second step one performs an explicit analysis to study the impact 
between the blade debris and the hybrid fan case using results from the previous 
step. Some of the main issues considered in assessing the suitability of a 
computational model in industrial environment include finding a constitutive law 
capable of capturing the complex physical interaction including intra and inter 
layers failure mechanisms as well as contact interaction related to the gap size 
between the adjacent layers, and finding the appropriate mesh size limited by 
available computer capacity and production time [11,12]. A parametric study is then 
performed for assessing how this material model can be applied to an industrial 
problem and to further evaluate if our predictions in terms of the number of plies 
needed to contain the debris and total weight reduction are in agreement with 
industry observations. 

The analysis comprises two separate sub-models: (i) a pre-stress model for 
initialization of field variables induced by setting up the motion of the fan blade 
from rest to cruise rotating speed; (ii) the model for blade debris release and its 
impact with the engine casing. The modeling technique is thus interesting in the 
sense that we use a first model to pre-constrain the fan blade following the rotating 
motion built-up and then use the accumulated deformation history to start the 
subsequent impact analysis. The setup of these two models is dealt with using 
specific tools and functionalities of Abaqus. The first analysis is solely concerned 
with the fan blade and is used to obtain the initial stresses and strains appearing in 
each element as well as the velocities of each node of the fan blade model when it is 
put in rotational motion. In Abaqus, this motion is defined by specifying an axis of 
rotation and a rotational velocity as well as multipoint constraints (MPCs). This 
analysis step is performed using Abaqus implicit solver, i.e. Abaqus standard.  The 
results of this analysis are then imported in the subsequent analysis which deals 
with the impact of the fan blade debris on the engine casing. In this second analysis 



phase, a new part, called engine casing, is created and assembled with the previous 
fan blade model. A hybrid engine casing is modeled using an aluminum cylindrical 
shell as the base structure defining the casing shape around which a dry fabric 
composite material is wrapped. For high velocity impact modeling involved in this 
containment simulation, the Abaqus explicit solver is used together with the 
developed VUMAT [9].  
 

DEVELOPMENT AND VALIDATION OF BALLISTIC FABRIC MODEL 

In this paper a simplified engine fan blade containment problem is 
considered as an application of the work presented in ref [3]. All parameters and 
model geometry used in the paper are taken from our previous work [3,8] done 
using Ls-Dyna environment in order to validate our modeling results in ABAQUS 
environment. The first step in the design of hybrid lightweight fan case is to setup a 
valid constitutive model for the Kevlar wrap. A material model developed in [9] has 
been validated through a series of transient nonlinear dynamic analyses of the 
impact of a square-shaped fabric plate with a blunt projectile.  The computed results 
in terms of projectile velocity throughout the analysis were compared to available 
experimental data (ELVS data). Figure 1 shows that the developed material model 
provides a reasonably good description for the fabric deformation and fracture 
behavior.  
 

 

Figure 1: Comparison between FEM and experimental analyses from 
Shahkarami[7] of the impact velocity 

 

METHODOLOGY FOR THE NUMERICAL SIMULATION OF A FAN BLADE 
CONTAINMENT PROBLEM 

In this section, details regarding the modeling methodology of the first and 
second sub-models for the fan blade impact analysis are presented. Then the results 
regarding the velocity of the blade during the impact are presented followed by a 
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Figure 5 shows the obtained stress distribution inside the fan blade at the end of the 
implicit analysis this is similar those obtained in [3] using in LS-DYNA (give a 
clearer picture assessing the two stress distributions). The velocity vector at each 
node of the fan blade will exported to the second analysis and this information will 
enable us to apply a velocity boundary condition in the impact analysis that will set 
the blade in motion in the explicit analysis. 
 

Explicit analysis: Debris Generation and Impact on the Fan Case 

In this analysis phase, we have to simulate the blade release event (generation 
of debris) and to model and analyse the high velocity debris impact on the fan case. 
The material model for the blade is the same as the one presented in the previous 
section. The fan case is composed of two sections: the metallic ring part, to be 
impacted first and the dry Kevlar multiple layers woven fabric wrapped around it 
[1, 3]. We assigned a different material model to each of them. The metallic ring 
structure in Aluminium (Al) is modeled with the material properties with isotropic 
hardening given in table 1 and the Kevlar fabric wrap is modeled with a new 
advanced material model, the Fabric Crossover VUMAT model implemented in 
ABAQUS-Explicit [9]. A continuum modelling approach is used to model the 
fabrics in such a way that the interaction of yarns in a unit cell is smeared into a 
single representative S4R ABAQUS finite strain shell element.  

The second analysis is performed using the Abaqus explicit solver. The fan 
blade geometry needs to be imported from the first analysis.odb result file. Also, on 
that geometry a velocity predefined field calling the previous .odb result file needs 
to be defined to set the fan blade in motion. The standard metallic engine casing is 
replaced by a hybrid model, meaning that it is made of an assembly of a metallic 
base layer and of several dry fabric composite layers wrapped around it. The Al 
material parameters are: ρ=0.0027g/mm3; E=68.948GPa; υ=0.33; σY=213.78MPa; 
ETAN=77.951MPa; FS=0.18 and the values for the time vs strain rate are 1:1; 
100:1.1; 1000:1.3; 2500:1.5. (Kevlar material is given in [3]). In the considered 
model there are four layers of Kevlar fabric wrapped around the cylindrical inner 
aluminum shell.  
 

DEFINING THE GEOMETRY 

The first operation to set up the 2nd analysis is to create the geometric model of the 
engine casing. Then, from the implicit analysis result file, the geometry of the tip of 
the blade is imported and assembled to form the fan case model. The engine casing 
is thus made of four concentric cylinders. The innermost cylinder is metallic and the 
four other cylinders are made of fabric composite materials. Of course we will be 
using the developed VUMAT to model the composite behavior during impact. Each 
cylinder radius is increased by 0,2499mm to account for the exact thickness of the 
material. The inner radius of the innermost metallic skin is 250mm; the length of 
the cylinder is 150mm. These are approximately the values used in LS-Dyna by 
[1,3] which are respectively 249mm and 105mm. 
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In this configuration, the blade perforates the containment casing and exits at 125 
m/s. Figure 8 shows the velocity drop of the fan blade during the impact. Also one 
note that the second dynamic analysis is starting at the point in time where the 
previous analysis stopped and this is why the curve is plotted from 9.2s . 
 

 
Figure 8: Curve of the blade’s velocity over the duration of the analysis 

 
Figure 9 shows the plot of the energy curves for the internal energy (ALLIE), the 
kinetic energy (ALLKE) and the total energy of the model (ETOTAL) during this 
impact analysis. 
 

 
Figure 9: Energy curve of the blade’s velocity over the duration of the analysis  
 
We may observe that the total energy of the model remains constant over the 
duration of the analysis indicating that the model is consistent. Furthermore the 
observed loss of velocity is translated in a loss of kinetic energy which is 
transferred to the casing as internal strain energy that deforms and damages it. This 
is the main reason for the observed increase of internal energy of the model. Those 
few observations demonstrate that the model is behaving correctly. 
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HYBRID FAN CASE CONTAINMENT STUDY 

Debris protection using multilayered dry fabric pate structure  

In Figure  we show a simple study on the impact of the projectile on a plate made of 
increasing number of fabric layer. This study was carried out to find out if the 
developed VUMAT can be used in predicting the number of fabric layers needed to 
prevent penetration of the blunt projectile impacting flat plate configuration. Since a 
shell element corresponding to the crossover model is used the computation time 
needed to obtain result increases drastically with the number of layers.  First the 
final velocities after impact on a 1-ply plate, a 2-ply plate and a 4-ply plate were 
collected. All other parameters such as initial velocity, crimp angle of the fabric and 
element size remained the same for all analysis. In the case of the 1-ply impact, the 
final velocity of the impactor is 82m/s. In the case of the 2-ply plate, it is 58m/s and 
in the case of the 4-ply impact the final velocity is 18m/s. Also an analysis run with 
a 6-ply plate was performed and it was found out that this configuration completely 
stopped the projectile, as shown in figure 10. 

 
Figure 10: Influence of the number of layers over the final velocity of the projectile 

SIMPLIFIED FORMULA TO PREDICT NON-PENETRATION  

Plotting each final velocity for 1-ply, 2-ply and 4-ply impacts, it is possible to 
create an analytic relation that could be used for prediction the numbers of layers 
required to prevent penetration. Using the three results a quadratic function was 
determined using Excel interpolation/extrapolation capabilities and this is presented 
in Figure . The quadratic function has the following equation where X is the 
number of layers: 

 f X = 2.7639X − 37.161X + 118.12 (1) 
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Figure 11: Prediction analysis to define the number of layers needed to stop the 

projectile 
 
Using this equation, it was possible to predict the number of layers needed to stop 
the projectile. The projections for 5 and 6 layers of fabric are shown in figure 11 in 
red. We can observe that 5 layers are not enough to stop the projectile as the 
projected final velocity is 3m/s. The correct number of layers is seen to be 6 and it 
is interesting to note at this point that this is the result we get from Abaqus as it was 
mentioned previously.  
Consequently we can conclude that for this simple impact test our predicting model 
based on equation 1 linking the final velocity of the impactor with the number of 
fabric layers is correct. This approach will be applied in an attempt to predict the 
number of layers in the hybrid fan casing needed to prevent escape of the fan blade 
debris. 
 

Impact on full metal casing 

The analytic approach developed previously is here applied for the case of metallic 
structure in an attempt to finding the number of aluminum layers required to 
contain the fan blade debris. This has been done through a numerical trial and error 
approach. We set up 6 analyses to test different configurations of the engine 
containment involving different number of 0.5mm thick aluminum layers which is 
exactly the value used in[3] to set up the analysis in LS-Dyna. The configuration of 
the analysis is presented in figure 12 and depicts the 24-layer thick aluminum 
casing. The total computation time to run a 24-layer fully metallic model is 
approximately 35 minutes on standard dual core PC. 
We tested the following configurations: 4 layers, 8 layers, 12 layers, 18 layers, 20 
layers and 24 layers and extracted the final velocity of the projectile; the results are 
summarized in Table 2. This table shows that 24 layers are very close to stopping 
the projectile thus we can conclude that 25 layers of aluminum will definitely stop 
the projectile from escaping the containment but this has to be verified a posteriori.  
 

y = 2,7639x2 - 37,161x + 118,12
R² = 1
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Application to hybrid fan case  

The preceding analysis for metallic structure is extended to hybrid fan case in order 
to find the number of fabric plies wrapped around an inner metallic casing required 
to contain the fan debris. As it was done before, we will correlate the number of 
layers of fabric with the final velocity of the blade. Simulations for 4, 6, 8 and 10 
layers of fabric were run successfully and the obtained results are presented in 
Figure . The final velocity of the blade for the 4-ply casing is approximately 
133m/s, for the 6-ply casing it is 131m/s, for the 8-ply casing it is 129m/s and 
finally for the 10-ply casing it is 124 m/s.  
 

 

Figure 15: The fan blade’s velocity evolution or different configurations of the 
hybrid casing 

Several numerical tests were performed on multiple configurations of the hybrid 
casing with more than 10 layers of fabric on top of the metallic internal casing and 
the computational process was observed to become progressively unstable and 
terminated by numerical crashing. The phenomenon was observed to start at 11 
layers of fabric. At this time, two explanations can be attempted. First, the lack of 
progressive damage model in the developed VUMAT has been identified as a 
potential problem which would lead to numerical instabilities. In our case, using the 
element deletion option in Abaqus implies that the element is removed as soon as 
the damage criterion is met and this may leads to a premature loss of material 
implying a loss of internal energy while affecting the stability and accuracy of the 
contact algorithm. Hence progressive damage and strain rate dependency should be 
implemented as a way to cure this problem. Also as described by Badel et al[13], 
another possibility to address the observed numerical instabilities would be to  use a 
corotational frame based on fiber frame (FF approach) to update the material stress-
strain history instead of the Green-Naghdi (GN) approach used here to produce the 
results. According to the later work, a calculation run using the FF approach 
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completed successfully in case of strongly anisotropic material whereas the GN 
based approach failed because this is more suited to initially isotropic materials 
with weak induced anisotropy. More developments thus need to be done to 
implement the FF approach in the VUMAT. 
Despite the above mentioned VUMAT deficiencies, the four numerical results were 
however used to construct an extrapolated quadratic function (Figure ) in effort to 
try to predict the number of layers required to contain the debris. One can observe 
that the form of the equation (eqn 3) and its coefficient are very close to the one 
obtained for the fully metallic casing (eqn 2). It is not surprising that adding layers 
to the containment affects the final velocity of the debris in the similar way. 
 

 

Figure 16: Velocity evolution predictions of the fan blade for different 
configuration of the casing 

The interpolation/extrapolation performed in Excel using the FEA results yields the 
following function to predict the number of Kevlar layers needed to stop the blade: 

 f X = −0.2131X + 1.5999X + 129.97 (3) 
 
In its turn, this analytic function is used to compute some predictions of the residual 
velocity in terms of number of fabric plies. The results are shown in red in Figure . 
According to this preliminary analysis one could conclude that approximately 30 
layers of fabric are needed to stop the projectile from completely perforating the 
engine casing. However, care should be taken with this value because by the time 
being, we have insufficient data to make an accurate prediction. However, in order 
to further support this conclusion we have run a very large analysis with a 30 layers 
of fabric configuration of the containment vessel. 30 layers were chosen specifically 
because it is roughly the number of layers needed to stop the projectile. This 
analysis crashed however before completion but the goal was to observe the 
evolution of the impactor velocity during the first increments of the analysis and to 
compare it with the evolution obtained for the blade while working with  25-layers 
of full metallic casing which is able to stop the projectile. The results are presented 
in Figure . 
 

y = -0,2131x2 + 1,5999x + 129,97
R² = 0,9952
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Figure 17: Comparison of the blade velocity evolution for the 25-layer metallic 
casing and the 30-layer hybrid casing 

We can observe from figure 17 that the evolution of the two velocities is roughly 
the same at the beginning of the analysis time. Obviously further testing is still 
needed in order to arrive at clear conclusion. 

 

CONCLUSION 

Composite or hybrid containment fan cases are in practice made from 
multiple layers of high performance fabrics to defeat the specific types of threats 
they are exposed to. Hence, as a result, a major part of the fabric target energy 
absorption stems from the interaction of individual layers with each other in the 
pack. To study such interaction existing in a real fan case, the shell crossover model 
is used to simulate the ballistic impact experiments on multi-ply Kevlar® 129 
targets.  
Numerical tests of a projectile impacting on a fabric plate were conducted and the 
influence of the number of plies on the final impact velocity has been studied. Also 
we studied the influence of various other material parameters that were input in the 
VUMAT to assess their influence over the results. Predicting how many plies were 
needed to stop the projectile based on partial simulation was a key objective of that 
section. It was found out that for a multilayered dry fabric flat plate it is indeed 
possible to predict the number of plies needed to prevent penetration and this 
prediction has been verified with numerical testing. In an attempt to extend the 
developed methodology to the design of an engine lightweight fanblade 
containment structure, curved soft wall structure is used and the underlying physics 
is seen to behave differently as in the case of flat structure since beyond ten layers 
of Kevlar dry fabric the analysis process blow up, indicating that the physics is not 
well captured. Hence more work is still going on in order to improve our material 
model. 
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